
Fixing BRexx on
VM/370
(Or REXX and Bytecode)
(Or CREXX - A REXX Architecture)
The 31st Annual Rexx Symposium

Adrian Sutherland • 29.09.2020
(Final)

Fixing BRexx on
VM/370

VM/370 DevOps

GCCLIB - The C library

BREXX - Internals and changes

The CREXX Project - A REXX Architecture

REXX - how can it be improved while

keeping its essence, “to make programming

easier than before”?

Next Up - The VM/370 interface to
Rexx with Bob Bolch

WARNING: We are going to cover this but in a
non-linear narrative structure (!)

LLVM

The LLVM Project is a collection of
modular and reusable compiler and
toolchain technologies

https://llvm.org/

The core of LLVM is the intermediate representation (IR), a low-level
programming language similar to assembly. IR is a strongly typed
reduced instruction set computing (RISC) instruction set which
abstracts away most details of the target. For example, the calling
convention is abstracted through call and ret instructions with explicit
arguments. Also, instead of a fixed set of registers, IR uses an infinite set
of temporaries of the form %0, %1, etc.

https://llvm.org/

Pipelining
Conceptually a CPU executes instructions one
after the other, however to get a performance
boost instructions overlap in a “production line”
(pipeline).

Pipeline lengths are currently typically 15 odd
stages (Intel/ARM)

There are hazards that cause a pipeline stall
(e.g. accessing information not yet written and
conditional branching)

This is one reason why it is very hard to write
modern assembler and efficient backends for
different architectures (hence the use of
LLVM). Another is CPU memory caching

However a journeyman programmer can do
somethings!

Diagram from a Aharon Kupershtok lecture

Typical Bytecode
Optimisation

1. Threaded code
2. Super-instructions / inlining
3. Top-of-stack in a register
4. Scheduling the dispatch of the

next VM instruction

In all about 2x faster than classic
bytecode

We should be aiming for performance of
only 2-5 times slower than native code

NOTE - We could be talking about any language ...

char code[] = {
 ICONST_1, ICONST_2,
 IADD, ...
}
char *pc = code;

/* dispatch loop */
while(true) {
 switch(*pc++) {
 case ICONST_1: *++sp = 1; break;
 case ICONST_2: *++sp = 2; break;
 case IADD:
 sp[-1] += *sp; --sp; break;
 ...
}}

Pure Bytecode

void *code[] = {
 &&ICONST_1, &&ICONST_2,
 &&IADD, ...
}
void **pc = code;

/* implementations */
goto **(pc);

ICONST_1: pc++; *++sp = 1; goto **(pc);
ICONST_2: pc++; *++sp = 2; goto **(pc);
IADD:
 pc++; sp[-1] += *sp; --sp; goto **(pc);
...

Threaded Interpreter

REXX Assembler

This is where optimisations become
REXX specific ...

BREXX

● Stack Based
● Leaves work to the interpreter

CREXX

● Register Based
● Trying to handle REXXisms at

the low level

We need to get this right for LLVM ...

/* SIMPLE */
A = 10
B = 5
SAY A + B

NEWCLAUSE
CREATE "A"
PUSH 10
COPY
NEWCLAUSE
CREATE "B"
PUSH 5
COPY
NEWCLAUSE
PUSHTMP
LOAD "A"
LOAD "B"
ADD
SAY
NEWCLAUSE
IEXIT

BREXX

.def main: locals=3 {r1="A", r2="B"}
ILOAD r1,10

ILOAD r2,5

IADD r3,r1,r2

ISAY r3
HALT

CREXX

CREXX Variable

REXX Variable
Types

1. Rexx is typeless … and more than
that conceptually all variables
are strings

2. Rexx stems provide a flexible
and arbitrary index scheme

3. VALUE(), INTERPRET(), and
REXXSAA/EXECOMM all
require dynamic variable name
resolution

4. Performance requires compile
time resolution of variable
names and types, wherever
possible

Dynamic lookup
(tree/ hash)

Variable Status (what buffers
are uptodate)

Lazy updates
(only updates
the type being

set)

Copy on Write

Mapped to a
Register when

needed

String Buffer

Integer Buffer

Arbitrary Precision Number
Buffer

Date Buffer ...

REXX VM
Specific Memory

Allocation

Note: BREXX
has a single
shared buffer

REXX Assembler

This is where optimisations become
REXX specific ...

BREXX

● Stack Based
● Leaves work to the interpreter

CREXX

● Register Based
● Trying to handle REXXisms at

the low level

We need to get this right for LLVM ...

/* SIMPLE2 */
ARG INDEX VAL
DATA.INDEX = VAL
SAY DATA.INDEX

> SIMPLE2 10 TEST

NEWCLAUSE
LOADARG
COPY2TMP
UPPER
PARSE
TR_SPACE
CREATE "INDEX"
PVAR
TR_END
CREATE "VAL"
PVAR
POP
NEWCLAUSE
CREATE "DATA.INDEX"
LOAD "VAL"
COPY
NEWCLAUSE
LOAD "DATA.INDEX"
SAY
NEWCLAUSE
IEXIT

BREXX

.def main: locals=4 {r1="INDEX", r2="VAL"}
ARGUPPER r4
TR_SPACE r1,r4
TR_END r2,r4

SCLOAD r4,"DATA." * DATA. in const pool
SCONCAT r4,r4,r1 * r4 is now "DATA.10"
SRMAP1 r3,r4 * r3 is var DATA.10
SLOAD r3,r2 * = VAL

SSAY r3
HALT

CREXX

REXX Assembler

This is where optimisations become
REXX specific ...

BREXX

● Stack Based
● Leaves work to the interpreter

CREXX

● Register Based
● Trying to handle REXXisms at

the low level

We need to get this right for LLVM ...

/* SIMPLE2 */
ARG INDEX VAL
DATA.INDEX = VAL
SAY DATA.INDEX

> SIMPLE2 10 TEST

NEWCLAUSE
LOADARG
COPY2TMP
UPPER
PARSE
TR_SPACE
CREATE "INDEX"
PVAR
TR_END
CREATE "VAL"
PVAR
POP
NEWCLAUSE
CREATE "DATA.INDEX"
LOAD "VAL"
COPY
NEWCLAUSE
LOAD "DATA.INDEX"
SAY
NEWCLAUSE
IEXIT

BREXX

.def main: locals=4 {r1="INDEX", r2="VAL"}
ARGUPPER r4
TR_SPACE r1,r4
TR_END r2,r4

SCLOAD r4,"DATA." * DATA. in const pool
SCONCAT r4,r4,r1 * r4 is now "DATA.10"
SRMAP1 r3,r4 * r3 is var DATA.10
SLOAD r3,r2 * = VAL

SSAY r3
HALT

CREXX

REXX Assembler Variable Mapping

With Constant Pool

* Map RegisterN to DATA
SCRMAP rN,"DATA"

* Map RegisterN to DATA.“registerA”
SCRMAP1 rN,"DATA",rA

* Map RegisterN to DATA.“registerA”.“registerB”
SCRMAP2 rN,"DATA",rA, rB

… etc.

Without Constant Pool

* Map RegisterN to “registerA”
SRMAP1 rN,rA

* Map RegisterN to “registerA”.“registerB”
SRMAP2 rN,rA,rB

… etc.

REXX Assembler Variable Type Control

IREADY rN
FREADY rN * TBD - how to control precision ...
SREADY rN
DREADY rN * Date … why not?!

ADD rN,RM * Readies both registers as integers (unlike IADD) ...

Key

High Level Components & Implementation Leverageable Tools

CREXX

REXX
Lexer &
Parser

REXX
ByteCode
Interpreter

REXX IO

REXX
Variables

REXX
Strings

REXX BIF
Built in Functions

REXX
ADDRESS
External Calls

Leveraged

CREXX

C Library

POSIX

Linux.
Windows,Mac
OS, VM/370

Drivers

REXX
Compiler

REXX
MathsREXX

AST & Static
Optimisation

REXX
Assembly

Tools

ANTLR 3

PackCC

BREXX

Regina

ANTLE 3

REXX native
backends

(Compiled /
JIT)

ANTLE 3

BREXX

VMGEN

VMGEN

LLVM

BREXX

Regina

Regina LibBF

BREXX

Regina

BREXX

Regina

ShellSpawn

BREXX

Regina

BREXX

Regina

Custom

Custom

Custom

Custom

Other REXX Considerations

1. Global Variables vs. EXPOSEd Variables
2. PARSE vs Regular Expressions
3. Shared variables across modules
4. Mixed-case lexing (and other funnies)
5. OOREXX - How to make it “easier”. E.g.

a. Static or Dynamic

b. Class Hierarchies or Interfaces?

6. What should “easier” IO look like? For example are pipes a
more “REXX” IO metaphor?

Is this accusation fair: just bolting on functions is rather “C” ...

DevOps - "a set of practices intended to reduce the time between
committing a change to a system and the change being placed
into normal production, while ensuring high quality"

Len Bass, Ingo Weber, and Liming Zhu

Technology

● Hercules S/370 Emulator
● VM/370 “Six Pack”
● Docker Containers
● Docker Hub
● GitHub Repository
● GitHub Actions
● Google Cloud Repository
● Google Cloud Container

Optimised OS for hosting
VM/370 Host

● YATA & Herccontrol
● REXX & C Test Suites

Key

High Level Components

CMS

CP

MODS

GCCLIB

BREXX

REXX
Compiler

REXX
Interpreter REXX IO REXX

Variables
REXX
Strings

REXX BIF
Built in Functions

REXX
ADDRESS
External Calls

C90 Library

CMS IO
Drivers

CMS Utility
FunctionsCMS Call

Types IO Support

File / DASD
Management

Storage
Management Commands

RESLIB 3270
Fullscreen

VM
Management

Dynamic
Stack DLMalloc

Nucleus
Extensions

Pass EXEC
cmd to BREXX

Utilities

Virtual Memory

Modified

Leveraged /
Existing

Components

Delivered or
extensively

changed

Adrian Sutherland

● CTO of Jumar Technology, specialists in legacy
modernisation

● Journeyman Architect
● Keeps “hands-on” through numerous projects, from

Raspberry PI toys and Domain Specific Languages to
open architectural papers and other assets.

adrian@sutherlandonline.org

adrian.sutherland@jumar-technology.com

mailto:adrian@sutherlandonline.org
mailto:adrian.sutherland@jumar-technology.com

Thanks to ...

● Bob Bolch - for all the hard work on VM/370, help with
my very poor S/370 Assembler, and always debating to
make things better! Without his help this would not have
been possible

● René Jansen - for all his encouragement, and bringing
together the REXX test Suite

And everyone else - whose ideas I have misused!

Questions

adrian@sutherlandonline.org
adrian.sutherland@jumar-technology.com

